Microsoft

Thirty-Fourth AAAI Conference on Artificial Intelligence

Workshop Cloud Intelligence: AI/ML for Efficient and Manageable Cloud Services February 7th, 2020, New York, New York - USA

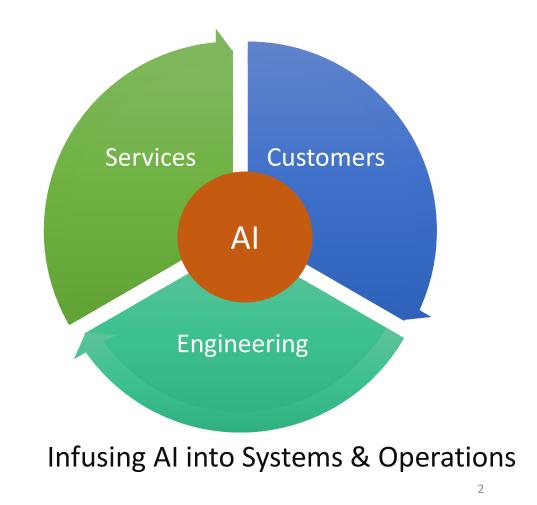
Toward Intelligent Cloud Platforms and AlOps

Microsoft Azure

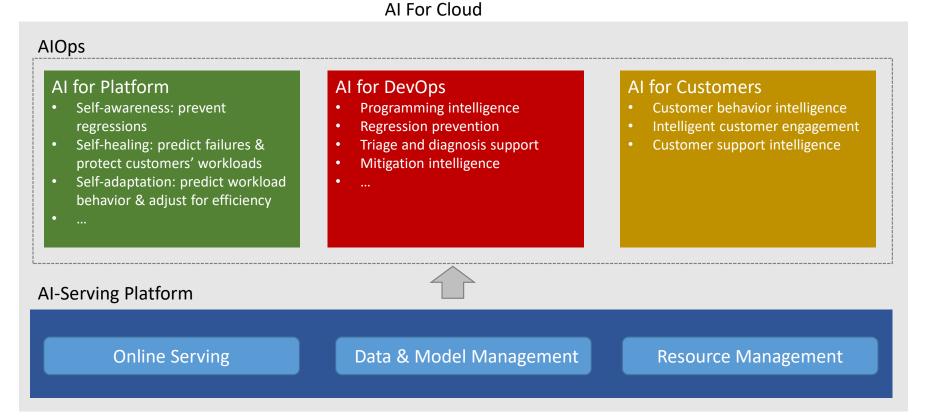
Marcus Fontoura, Technical Fellow Murali Chintalapati, Partner SWE Manager Yingnong Dang, Principal Data Scientist Manager

AI for Cloud

- Ongoing digital transformation across all industries
- Scale and complexity as the biggest challenge
- AI/ML is a key technology in addressing this challenge



Infusing Al into Systems & Operations: What Do We Need?



Al For Cloud: Al-Serving Platform for Azure

Al-Serving Platform for Azure

Online Serving

- Resource Central (foundational)
- Azure ML (higher levels)

Data & Model Management

- Azure Data Explorer
- Azure Data Lake
- Resource Central
- Azure ML

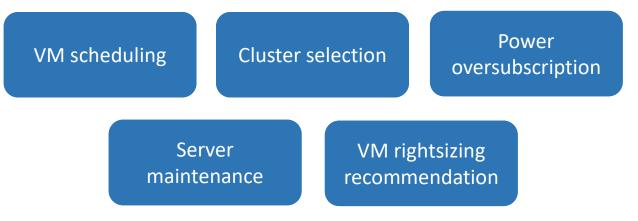
Resource Management:

- Impact-free server defragmentation
- Safe core oversubscription
- Etc.

Resource Central

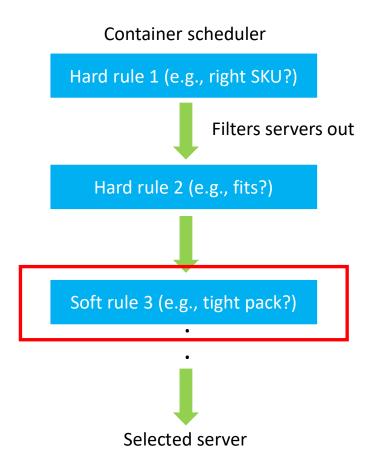
ML and prediction-serving system for improving resource management

RC clients: Platform resource managers



Case study: Smart CPU oversubscription

•



Goals:

- Be conservative! Stick with P95, 1st-party loads
- Don't oversubscribe servers running prod VMs
- Oversubscribe other servers up to a percentage over capacity and a max predicted (P95) utilization

New rule checking the sum of the P95 utilizations

Mispredictions: only issue is consistent under-prediction

RC-informed CPU oversubscription

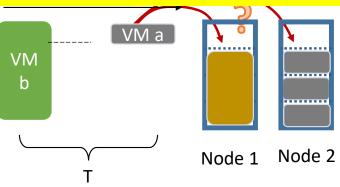
Simulation results

Version	Description	Behavior
Baseline	No oversubscription	Low capacity; many VM allocation failures
Naive	25% oversub without predictions	No failures; 6x resource exhaustion
RC-informed	25% oversub with RC predictions	No failures; rare exhaustion
RC-right	25% oversub with oracle predictions	No failures; same exhaustion

Multi-Dimension Optimization

- Container scheduling should achieve high utilization across all resource dimensions
 - 1. Multi-dimensional resource packing
 - 2. Take into account online nature of service allocation
 - <u>Simple example</u>: Assume every VM has

Lifetime prediction is important for container scheduling



- $\left(\frac{1}{2}\right)^2 + \left(\frac{1}{2}\right)^3 = \frac{6}{16}$
- If new VM is placed on Node 2: $\left(\frac{1}{2}\right) + \left(\frac{1}{2}\right)^4 = \frac{9}{16}$

 \rightarrow Placing new VM on Node 2 is better!

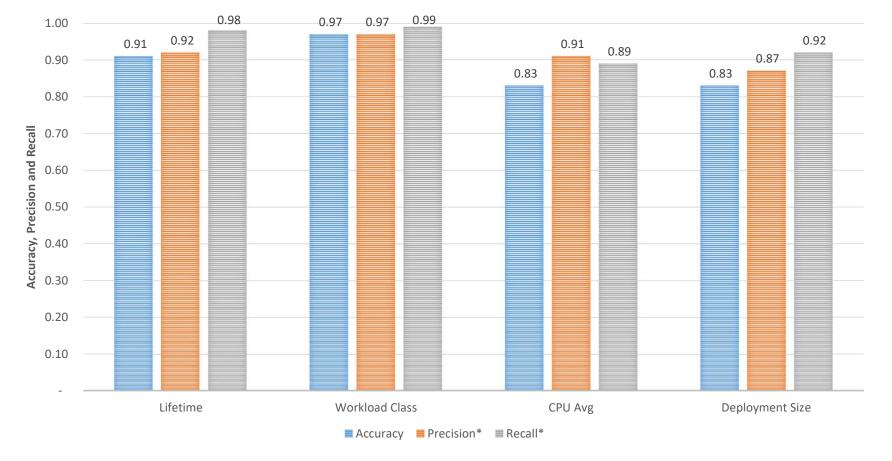
Resource utilization in Azure

• Each 1% of utilization gain results in huge savings

Container scheduling algorithms are crucial for operating the cloud effectively!

Prediction Quality

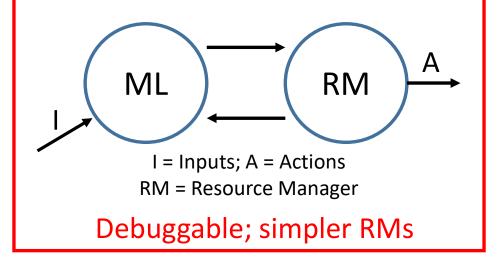
Accuracy $\ge 83\%$ Precision^{θ} $\ge 87\%$ Recall^{θ} $\ge 89\%$



Approaches to adding ML

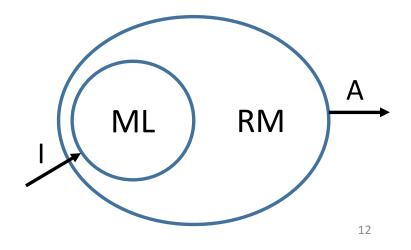
Passive, external to managers:

Predict load intensity, utilization Cluster workloads, resources ML as an insight provider



Active, built into managers:

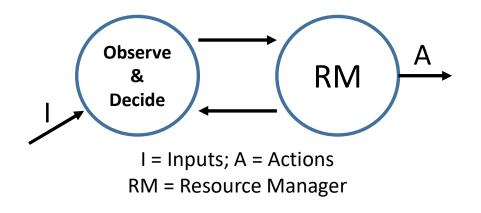
Adjust parameters of policies Select actions to be performed ML has deep knowledge of policies

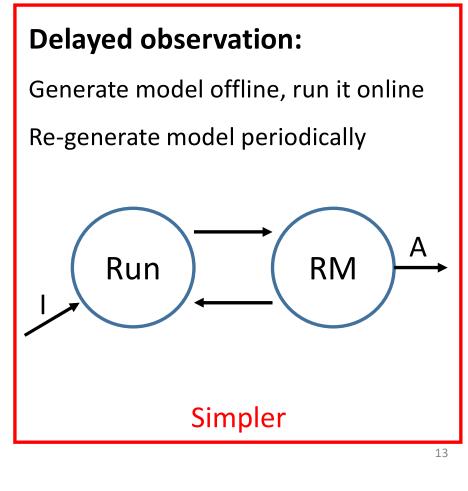


Along a different dimension

Iterative observe and decide:

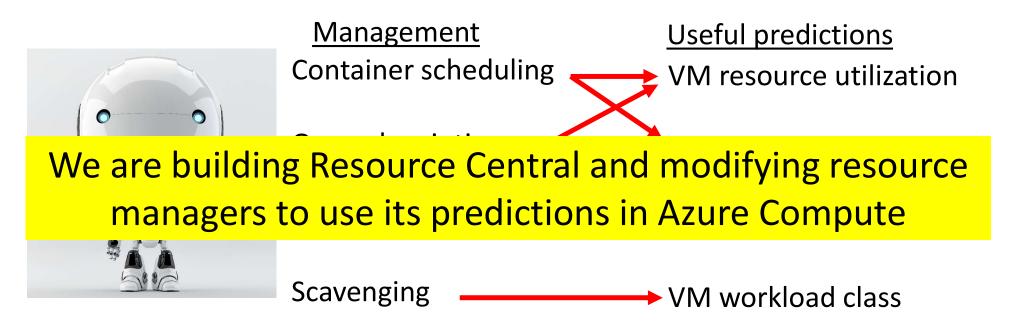
After each action, observe & decide Management as a control problem



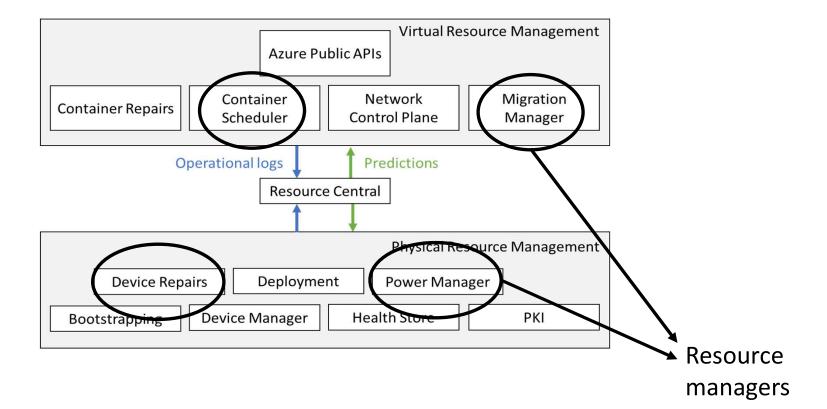


Summary of our approach

A general, passive and delayed-observation framework for all ML tasks

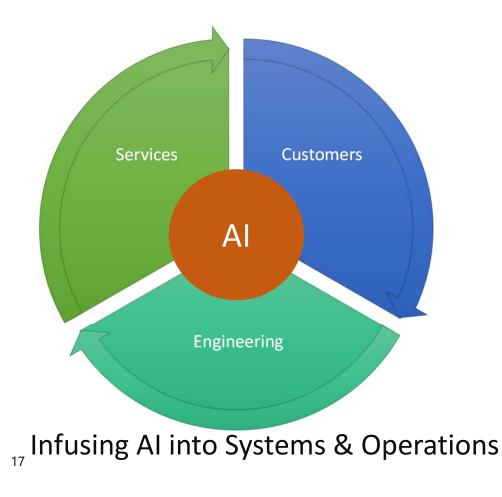


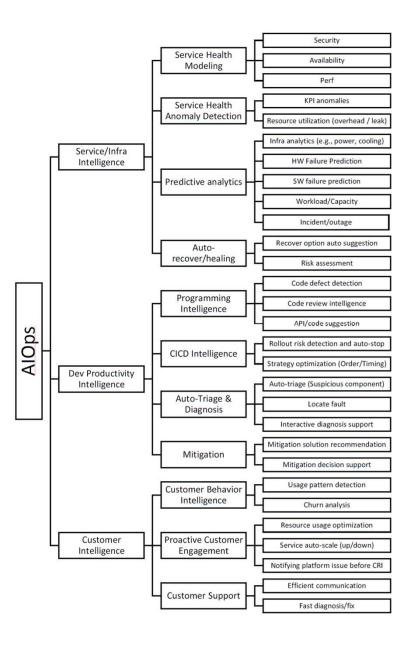
RC at the center of Azure Compute



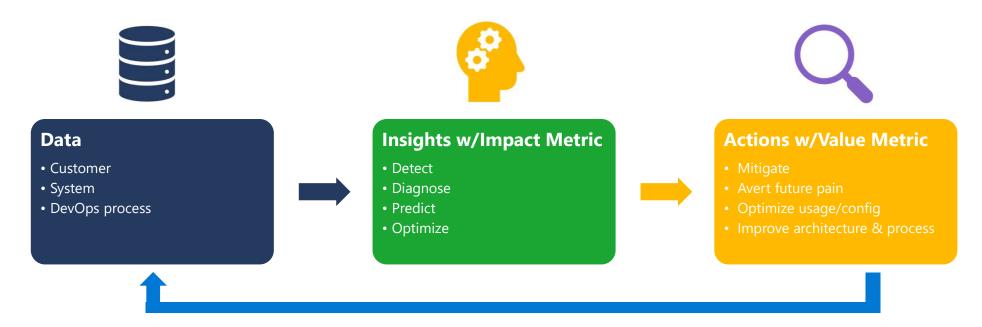
Al For Cloud: AlOps Solutions for Azure

Problem Space





Methodologies: From Data to Actions



- · Measuring Customer and COGS impact of both Insights and Actions
- Improving intelligence through continuous feedback loop
- · Driving architectural improvements for scalability, availability and reliability

Example: Dealing with Mem Leaks in Cloud

Data

Memory usage per Process for many instances

Training data: past several weeks, numerous time-series, large number of pivots

Volume: TBs of process data

Insights

Process Foo has memory leak

Mem consumption increase to '2n' MB on average (previous baseline: 'n' MB) in past **x** days

Geo scope: **y** machines in **z** clusters

Customer impact: creating new VMs in these nodes has 50% probability to fail

Mitigation: restart process Foo

Repair:

- Collect memory dump
- Identify root cause
- Bug fix
- Testing in Stage
- Rollout to production
- Validation in production

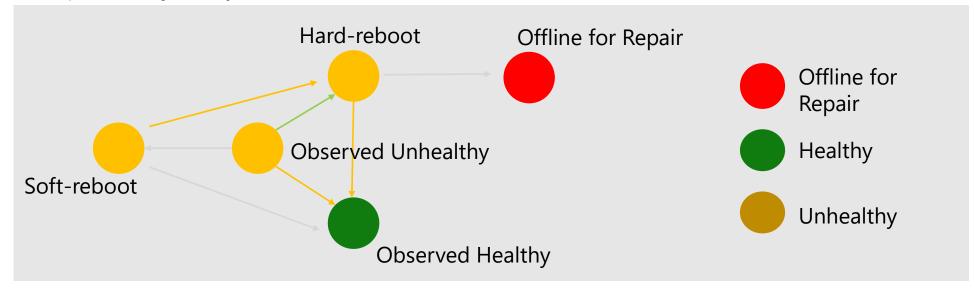
Case Studies

- 1. Self-adapting platform through smart thresholds
- 2. Resilient platform through failure prediction
- 3. Preventing platform regressions through Safe deployment

A Typical Problem: When to Timeout?

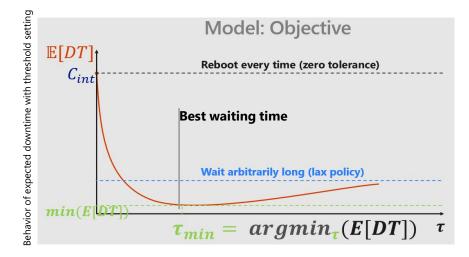
- Hard-coded thresholds in the platform leading to suboptimal decisions
- Thresholds can't be optimized in isolation

Example: node journey between online and offline

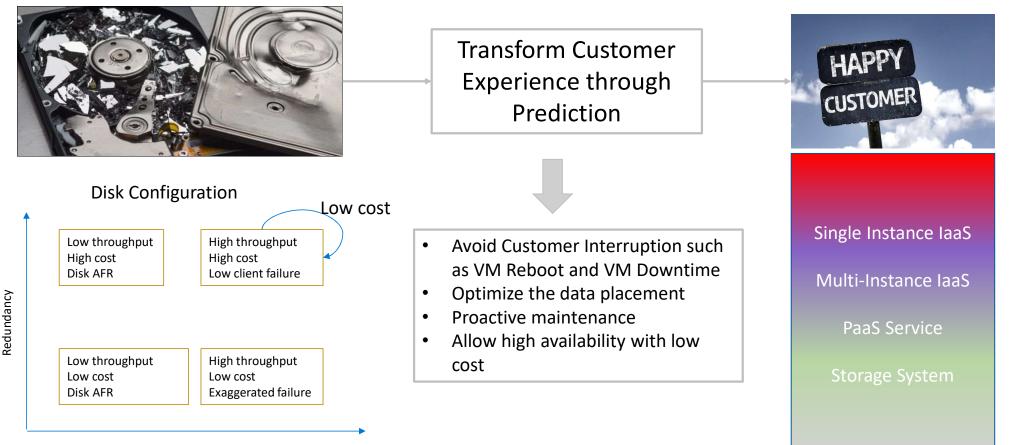


Self-Adapting Platform: Optimizing Timeout Thresholds

- Objective: minimize customer downtime caused by unhealthy host
- Unhealthy host: reboot or wait for auto-recovery?
 - Waiting too long will lead to long downtime duration.
 - Waiting too little will lead to more VM reboots.

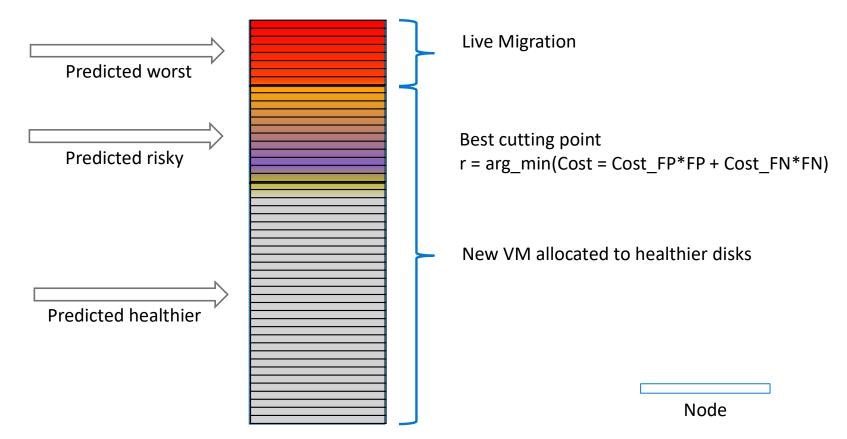


Prediction Helps Improve Customer Experience



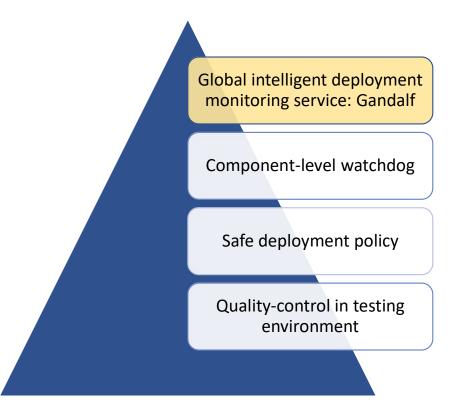
Disk Striping

Approach: Ranking Instead of Classification

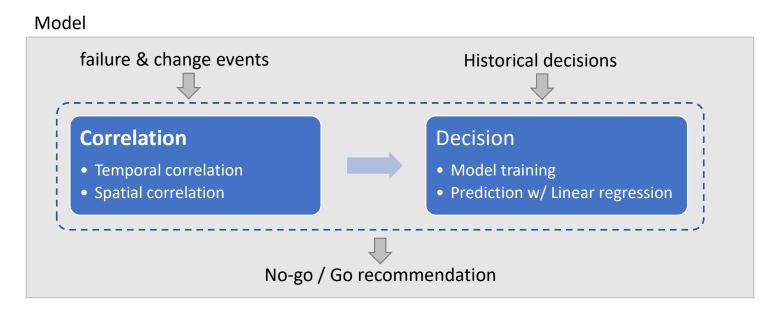


Improving Service Availability of Cloud Systems by Predicting Disk Error, USENIX ATC 2018

Azure's Four-layer Mechanism to Ensure Safe Deployment



Gandalf: Intelligent Global Watchdog



System

- Lamda architecture for supporting both batch and stream-processing based decisions
- REST API to notify rollout orchestrator and Web frontend for supporting evidence

Gandalf: An Intelligent, End-To-End Analytics Service for Safe Deployment in Large-Scale Cloud, NSDI'20

AlOps in Azure: Summary

- AIOps is critical for digital transformation and an emerging innovation area
- AlOps is a cross-discipline research area involving software engineering, software analytics, systems, big data, machine learning and visualization
- AlOps is comprehensive: from making the system smart and resilient to enhancing developer efficiency and improving customer experience
- AIOps is what makes modern clouds scale to the next generation of Computing
- AlOps calls for close collaboration between the industry and academia

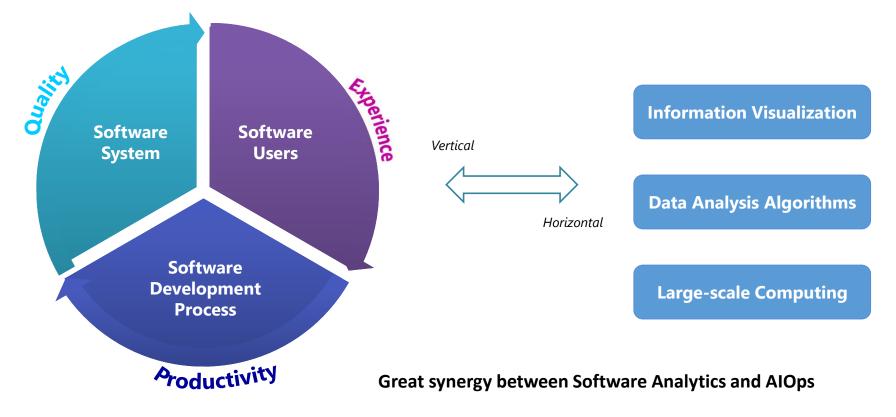
Al for Cloud: Related Research Areas

• Software Analytics

- "Software analytics aims to obtain insightful and actionable information from software artifacts that help practitioners accomplish tasks related to software development, systems, and users." – Dongmei Zhang, Microsoft Research
- Machine learning for systems
 - "Traditional low-level systems code (operating systems, compilers, storage systems) does not make extensive use of machine learning today " – Jeff Dean, Google Brain
 - MLCS 2018: First workshop on Machine Learning for Computing Systems

And more...

Software Analytics Research: 10+ Years from Microsoft Research Asia



Making Industrial and Academic Impact

Contributing to broad Microsoft products

Contributing to multiple research communities: Software Engineering, Systems, Data Mining, and ML

- An Intelligent, End-To-End Analytics Service for Safe Deployment in Large-Scale Cloud, NSDI'20
- Robust Log-based Anomaly Detection on Unstable Log Data, FSE'19
- Towards More Efficient Meta-heuristic Algorithms for Combinatorial Test Generation, FSE'19
- Local Search with Efficient Automatic Configuration for Minimum Vertex Cover, IJCAI'19
- Cross-dataset Time Series Anomaly Detection for Cloud Systems, USENIX ATC'19
- AIOps: Real-World Challenges and Research Innovations, Tech briefing, ICSE'19
- An Empirical Investigation of Incident Triage for Online Service Systems, SEIP, ICSE'19
- Outage Prediction and Diagnosis for Cloud Service Systems, short, WWW'19
- Identifying Impactful Service System Problems via Log Analysis, FSE'18
- Predicting Node Failure in Cloud Service Systems, FSE'18
- BigIN4: Instant, Interactive Insight Identification for Multi-Dimensional Big Data, SigKDD'18
- Improving Service Availability of Cloud Systems by Predicting Disk Error, USENIX ATC'18
- iDice: Problem Identification for Emerging Issues, ICSE 2016
- Log Clustering based Problem Identification for Online Service Systems, SEIP, ICSE 2016
- An Empirical Study on Quality Issues of Production Big Data Platform, SEIP, ICSE 2015
- YADING: Fast Clustering of Large-Scale Time Series Data, VLDB 2015
- Log2: A Cost-Aware Logging Mechanism for Performance Diagnosis, USENIX ATC 2015
- Correlating Events with Time Series for Incident Diagnosis, SigKDD'14
- Identifying Recurrent and Unknown Performance Issues, ICDM, 2014
- Mining Historical Issue Repositories to Heal Large-Scale Online Service Systems, ICDSN, 2014
- Where Do Developers Log? An Empirical Study on Logging Practices in Industry, ICSE 2014
- Contextual Analysis of Program Logs for Understanding System Behaviors, MSR 2013
- Software Analytics for Incident Management of Online Services: An Experience Report, ASE 2013
- Healing Online Service Systems via Mining Historical Issue Repositories, ASE 2012
- Performance Issue Diagnosis for Online Service Systems, SRDS 2012
- Mining Invariants from Console Logs for System Problem Detection, USENIX ATC 2010
- Mining Program Workflow from Interleaved Traces, SigKDD 2010
- Execution Anomaly Detection in Distributed Systems through Unstructured Log Analysis, ICDM, 2009
- Mining Dependency in Distributed Systems through unstructured log analysis, SIGOPS O³Creview 2009

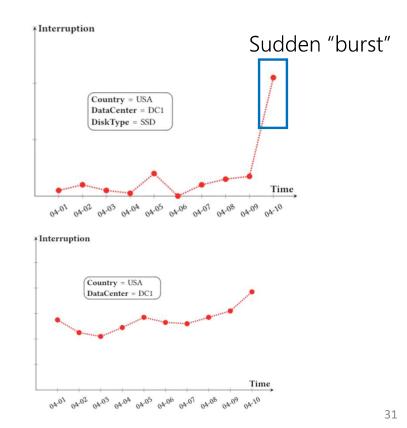
Microsoft

iDice – Identifying Emerging Issues From High Dimensional Data

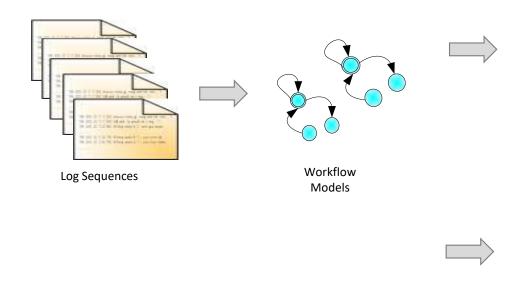
Daily aggregation of	of Service	e Interruptions
----------------------	------------	-----------------

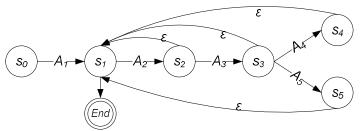
,	2011			
Time	Country	Datacenter	Disk Type	Interruption
2019-04-01	USA	DM1	SSD	1
2019-04-01	Australia	MEL21	SSD	1
2019-04-01	USA	DC1	HDD	4
2019-04-01	India	BL1	SSD	10
2019-04-01	UK	SN6	Hybrid	3
2019-04-01	USA	DM1	HDD	0

iDice: Problem Identification for Emerging Issues, ICSE 2016

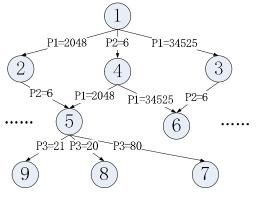


Interpreting System Behavior Semantics through Recovering Program Workflow from Logs





 A_{12} : Find State Order Items; A_{22} : Verify State Order Items; A_{32} : Is Using ATP; A_{42} : Deallocate Existing Inventory Cmd; A_{52} : Deallocate Expected Inventory Cmd.



Learn Contextual Factors

*Mining Program Workflow from Interleaved Traces, SigKDD 2010

*Contextual Analysis of Program Logs for Understanding System Behaviors, MSR 2013

32

Conclusion

- Al for Cloud: an important vertical that Al can generate great value
- Our vision is infusing AI into platform and DEVOps process
- Azure experience and learnings on AI for Cloud
- Contributions to multiple research communities

You are welcome to visit Microsoft booth during main conference Feb 8-11!

Microsoft booth is #211 the 2nd floor - Rhinelander

Thank You!